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Lack of accurate, efficient, generalized numerical model 
poses significant problems to project planning & 
construction across business lines.

• Leading edge of coastal inundation 
• Dune impact and erosion
• Overtopping of coastal barriers
• Design of engineering structures
• Storm recovery



1. Empirical – algebraic relationship between beach slope and wave 
conditions, but requires calibration, lacks physical processes, and only 
dependent on offshore conditions and general beach characteristics

2. Time averaged swash – wind wave (swell) evolution model is coupled 
with swash momentum closure expressions, which are derived 
empirically

3. Surfbeat – broken wave modeled as bore, but assumes infragravity (IG) 
wave frequency band dominates swash component, neglecting wave-
wave (and swash-swash) interactions 

4. Nonhydrostratic – fully resolved wave-by-wave modeling including 
dispersive effects, but computationally inefficient for practical purposes

Modeling approaches



Modeling approaches

Given a high-quality dataset of runup observations for known 
wave conditions, how do existing models quantitatively compare 
in terms of  accuracy and speed?



Modeling approaches

Empirical – Stockdon equation 

Time averaged swash 
– Coastal Modeling System (CMS) 
– CSHORE

Surfbeat – XBeach-SB

Nonhydrostatic – XBeach-NH

R2% = 2% exceedance probability, 
used to inform FRM design

Hs = significant wave height, Tp = peak wave period

Modeling approaches, cont



533 unique simulations per model

• Lidar-derived bathymetry
• Offshore hydro from wave gauges
• Run until equilibrium reached (steady state)

Modeling approaches



Model 1 – Stockdon, et al. (2006)

• Empirical formulation
• Based on a large dataset (collected from FRF, California, Oregon, 

Netherlands)
• Somewhat different with respect to Iribarren (Ib) models (Mase, 

Hunt, Holman, etc.), but more general

𝐼𝐼𝐼𝐼 =
tan 𝛽𝛽
𝐻𝐻/𝐿𝐿0 𝛽𝛽𝑓𝑓

Hmo = deep water wave height, Lo = deep water wavelength



Model 2 – CSHORE

 Assumes longshore uniformity
 Solve equations for time-steady

wave energy, momentum for 
time-averaged hydrodynamics

 Same number of equations & 
unknowns in fully wet (with 
linear radiation stress)

 No explicit prediction of IG 
component

 e.g CSHORE, SBEACH, Unibest



Model 2 – CSHORE

Fully wet portion
 Energy, Momentum, Mass 

conservation

 Gaussian random variable for wave 
processes 

Partially wet/dry portion
 Momentum, Mass conservation

 Exponential  random variable for 
wave processes

 Necessarily empirical  



Model 3 – CMS

**A0 was tailored to these data, other models 
are run without calibration. 

• Mass, momentum, and energy 
conservation equations in fully-
wetted domain

• Solution of drastically simplified 
momentum equation for water 
depth in swash

• Assumes Rayleigh distributed peaks
• Uses same geometric argument to 

predict runup statistics from time-
averaged hydrodynamics

• Initially used constant swash 
parameter, now: A0= 2.6 + 4.5ζ 

α = wave angle
g = gravitational acceleration
zb = bed elevation
U = depth-averaged velocity
cf = drag friction coefficient



Model 4 – XBEACH-SB

• Phase-averaged, but IG 
resolving

• Swash routine forced by 
both IG and wave 
envelope energy

• Boundary conditions 
derive from power 
spectral density (PSD) 
spectra, so phasing is 
random

https://xbeach.readthedocs.io/en/latest/xbeach_manual.html



Model 5 – XBEACH-NH

• Phase-resolving, 
similar to Boussinesq
models

• Boundary conditions 
as in XBeach

• Spectrum naturally 
evolves according to 
nonlinear transfer and 
breaking

• Steady state in 15 
minutes, total 
simulation time 1 hr
(model time)



Results – Model error vs. speed

Runtime RMSE (m) NRMSE (-)

Stockdon 0.18 s 1.01 0.89

CSHORE 25.0 s 0.55 0.34

CMS 4.1 min 0.29 0.13

XB-SB 35.5 hr 0.53 0.30

XB-NH 124.4 hr 0.45 0.23

CMS – positive bias, but lowest (N)RMSE

XB-NH – error more normally distributed, 
but higher variability

(N)RMSE = (normalized) root mean square error



Results – Model error vs. speed

Runtime RMSE (m) NRMSE (-)

Stockdon 0.18 s 1.01 0.89

CSHORE 25.0 s 0.55 0.34

CMS 4.1 min 0.29 0.13

XB-SB 35.5 hr 0.53 0.30

XB-NH 124.4 hr 0.45 0.23

CMS – positive bias, lowest (N)RMSE

and more than 2 orders of magnitude 
faster!



Results – Model error vs. hydrodynamics

𝐼𝐼𝐼𝐼 =
tan 𝛽𝛽
𝐻𝐻/𝐿𝐿0

𝛽𝛽

Iribarren
number or surf 

similarity 
parameter

𝐴𝐴0 = 𝑓𝑓(𝐼𝐼𝑏𝑏)

Collapsing, swell 
more important

Spilling, IG 
dominates

ε = model prediction – observation (error)



Results – Model error vs. hydrodynamics

𝜃𝜃𝑠𝑠 𝑓𝑓 =
∫0
2𝜋𝜋 𝐸𝐸 𝑓𝑓,𝜃𝜃 𝜃𝜃𝜃𝜃𝜃𝜃

∫0
2𝜋𝜋 𝐸𝐸 𝑓𝑓,𝜃𝜃 𝜃𝜃𝜃𝜃

Directional 
spread (𝜽𝜽𝒔𝒔) 

calculated from 
directional wave 

spectra

Young (1994)

𝑓𝑓𝜃𝜃

fp = 2π/Tp



Results – Model error vs. hydrodynamics

Frequency 
spread (fs) 

calculated from 
directional wave 

spectra

𝑓𝑓𝜃𝜃



Results – Model error driven by bathymetry 

Models based on offshore conditions alone suffer error when 
nearshore bathy details are not included.  Consider:  

Observed runup has 
pronounced tidal 

modulation

When mean water 
level (MWL) 

removed, tidal 
signal persists



Results – Model error driven by bathymetry 

How can we explain this tidal modulation of runup that is 
uncorrelated with offshore wave height, even after we remove the 
MSL contribution? 

Two possibilities:
• Algebraic models (and 

observations) indicate 
increased runup with steeper 
beach slope, slope increases as 
WL increases

• A sandbar can act to modulate 
the wind-wave component as 
WL increases (Hb increases)

Hb = breaking wave height



Results – Model error driven by bathymetry 

How can we explain this tidal modulation of runup that is 
uncorrelated with offshore wave height, even after we remove the 
MSL contribution? 

• The impact of steeper foreshore 
found to be insignificant

• When MSL removed, tidal 
signal of Stockdon prediction 
much lower than observed

• Therefore, observations are 
ascribed to the increased wave 
heights within the inner surf,
indicating the importance of bar 
geometry in runup predictions 



• As compared with more physically/numerically complex models (XB-
SB and XB-NH), CMS model:

• Predicts large data set (533) R2% with lower mean square error
• Produces predictions in a fraction of the time

• Although only calibrated based on Iribarren number, 
• CMS error is not sensitive to increased frequency and directional spread, as 

other models (higher and lower fidelity) are

• Tidal modulation of (𝑹𝑹𝟐𝟐𝟐 − �𝜼𝜼) shown to be unexplained by increased 
beach slope only

• Nearshore bar acts to limit wave heights incident to beach face
• Implies need for full resolution of beach profile and corresponding wave 

transformation 

Summary
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